Abstract

Abstract. The North Atlantic Oscillation (NAO) affects atmospheric variability from eastern North America to Europe. Although the link between the NAO and winter precipitations in eastern North America has been the focus of previous work, only few studies have considered extreme precipitation and hitherto provided clear physical explanations on these relationships. In this study we revisit and extend the analysis of the effect of the NAO on mean and heavy winter precipitations over a large domain covering southeast Canada and the northeastern United States. Furthermore, we use the recent ERA5 reanalysis dataset (1979–2018), which currently has the highest available horizontal resolution for a global reanalysis (0.25∘), to track extratropical cyclones to delve into the physical processes behind the relationship between NAO and precipitation, snowfall, snowfall-to-precipitation ratio (S∕P), and snow cover depth anomalies in the region. In particular, our results show that positive NAO phases are associated with less snowfall over a wide region covering Nova Scotia, New England and the Mid-Atlantic of the United States relative to negative NAO phases. Over the same area, the analysis of heavy snowfall revealed that there are up to twice as many heavy snowfall events during negative phases compared to positive phases. Therefore, a significant negative correlation is also seen between S∕P and the NAO over this region. This is due to a decrease (increase) in cyclogenesis of coastal storms near the United States east coast during positive (negative) NAO phases, as well as a northward (southward) displacement of the mean storm track over North America.

Highlights

  • The North Atlantic Oscillation (NAO) is the dominant mode of atmospheric variability in the North Atlantic (Hurrell, 1995)

  • In this study we examined the variability of the winter climate in relation with the NAO during the winter season over North America, with a particular focus on heavy precipitation and snowfall in the northeastern US and southeastern Canada

  • In order to better understand these changes in precipitation and snowfall, we investigated the storm track and cyclogenesis variability associated with the NAO phases, as well as the changes in blocking frequency across the North Atlantic Basin

Read more

Summary

Introduction

The North Atlantic Oscillation (NAO) is the dominant mode of atmospheric variability in the North Atlantic (Hurrell, 1995). The NAO refers to swings in the atmospheric pressure difference between the Icelandic low and Azores high and is a key factor in the cool-season climate variability from the eastern coast of the United States to Siberia and from the Arctic to the subtropical Atlantic. Positive NAO phases are associated with a deepening of the Icelandic low and a strengthening of the Azores high. The negative phase of the NAO is associated with weaker westerlies, an increase in meandering of the jet stream and higher-than-average pressure over Greenland and Iceland, which often form blocking patterns over the North Atlantic (Shabbar et al, 2001)

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call