Abstract

In this paper, a novel framework is proposed in order to evaluate impacts of the uncertain models of the system components on the voltage regulation problem of the medium-voltage distribution systems. The investigation focuses on the model uncertainty associated with voltage dependency of loads, power factor of loads, thermal dependency of lines, shunt admittances of lines and internal resistance of substation transformer. To this end, firstly, voltage constraints are managed using a centralised voltage control algorithm (VCA) by relying on the simplified models of the system components. The system loads and lines as well as the substation transformer are then modelled with the uncertain variables which are bounded in the predefined ranges. Monte Carlo (MC) simulations are used to create wide series of scenarios that cover the possible values that the parameters of the system components can take due to their uncertain nature. The model uncertainty impacts on the voltage regulation problem are finally evaluated by the load flow calculations considering the scenarios created by the MC simulations and the set-point obtained by the VCA. The proposed investigation brings useful information regarding the possible deviations that the node voltages can have due to the uncertain models of the studied components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.