Abstract

We use a spatially explicit biogeochemical end-to-end ecosystem model, Atlantis, to simulate impacts from the Deepwater Horizon oil spill and subsequent recovery of fish guilds. Dose-response relationships with expected oil concentrations were utilized to estimate the impact on fish growth and mortality rates. We also examine the effects of fisheries closures and impacts on recruitment. We validate predictions of the model by comparing population trends and age structure before and after the oil spill with fisheries independent data. The model suggests that recruitment effects and fishery closures had little influence on biomass dynamics. However, at the assumed level of oil concentrations and toxicity, impacts on fish mortality and growth rates were large and commensurate with observations. Sensitivity analysis suggests the biomass of large reef fish decreased by 25% to 50% in areas most affected by the spill, and biomass of large demersal fish decreased even more, by 40% to 70%. Impacts on reef and demersal forage caused starvation mortality in predators and increased reliance on pelagic forage. Impacts on the food web translated effects of the spill far away from the oiled area. Effects on age structure suggest possible delayed impacts on fishery yields. Recovery of high-turnover populations generally is predicted to occur within 10 years, but some slower-growing populations may take 30+ years to fully recover.

Highlights

  • The Deepwater Horizon (DWH) oil spill caused damages across a range of species and habitats in the Gulf of Mexico (GOM)

  • It is coupled to a hydrodynamic model that provides currents, temperature and salinity

  • Flow of nitrogen is tracked through the food web as it passes between functional groups

Read more

Summary

Introduction

The Deepwater Horizon (DWH) oil spill caused damages across a range of species and habitats in the Gulf of Mexico (GOM). Toxicological effects have been documented in benthic and pelagic fish communities [1,2], estuarine communities [3,4], mammals, birds and turtles [5,6,7], deep-water corals [8], plankton [9,10], foraminifera [11], and microbial communities [12]. Effects can manifest at the population level as increased mortality or as sub-lethal impairment. Ecosystem impacts of the Deepwater Horizon oil spill. Oil spill simulations and writing of manuscript

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call