Abstract

With the Microwave Humidity Sounder-2 (MWHS-2)/Fengyun (FY)-3D in operation, this is the first study to evaluate the impact of a joint assimilation of MWHS-2 radiances under all-sky conditions from both the FY-3C and FY-3D satellites on typhoon forecasting within regional areas. In this study, Typhoon Hagupit in 2020 was chosen to investigate the impacts of assimilating MWHS-2 radiances; the forecasting performances of the joint assimilation method were slightly better than the experiments assimilating MWHS-2 observations from FY-3C or FY-3D only, and the results of the latter two experiments were comparable, especially in terms of the landfall location of Hagupit. With additional assimilated cloud- and precipitation-affected MWHS-2 observations, improved typhoon track and intensity forecasts as well as forecasts of the precipitation caused by Hagupit were achieved due to the improved analyses of relative humidity, temperature and wind fields around Hagupit compared to the clear-sky assimilation experiments. In addition, the channel-selection scheme evidently affected the forecasting performance; that is, the radiances from the MWHS-2 118 GHz and 183 GHz channels provided opposite results in terms of the Hagupit track, and this finding needs further investigation in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call