Abstract
Functional carbon nanodots (FCNs) with multiple chemical groups have great impact on the growth regulation of plants. To understand the role of the chemical groups, FCNs were reduced from the raw material by pyrolysis method and hydrolysis method. The chemical structure of these materials were characterized by using TGA, TEM, FT-IR, XPS, Raman and elementary analysis. The raw and reduced FCNs were used as plants growth regulators in culture medium of Arabidopsis thaliana. Our results indicate there is a strong correlation between the physiological responses of plants and the surface chemistries (especially carboxyl group and ester group) of the nanomaterials. The quantum-sized FCNs with multiple carboxyl groups and ester groups show better aqueous dispersity and can induce various positive physiological responses in Arabidopsis thaliana seedlings compared with the FCNs decorated without carboxyl and ester as well as aggregated FCNs. The raw FCNs present higher promotion capacity in plants biomass and roots length, and the quantum-sized FCNs are easier to be absorbed by plants and generate more positive effects on plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.