Abstract

During the operation of oil and gas transportation pipeline, condensate forms on the inner wall of the pipeline can lead to reduced transportation efficiency and potential safety hazards. Pigging is a widely used technology to remove deposition in pipelines. From the studies, it is found that the effect of pigging largely depends on the structure of the pig. The jetting pig is a new type of pigging device designed to prevent the blocking in the pigging process, and its baffles play an important role in guiding the jet fluid. In this paper, the impact of the structure of the baffle plate on the downstream flow field of the jetting pig is simulated and analyzed. The surface of the baffle plate is changed by using the curve of the contraction section of the water tunnel. It is found that the baffle plate structure has a great influence on the flow field at the outlet of the jet pig: (1) The increase of buffle area leads to the increase of turbulent kinetic energy and the decrease of velocity; (2) The rise of edge angle lead to the regular change of turbulent kinetic energy; (3) Different curved surfaces make the change of turbulent kinetic energy and velocity. The results in this study are helpful for a better understanding of mechanism of jetting pig and improved design of mechanical structure for improved pigging performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call