Abstract

A combined laboratory and modeling approach was used to assess the impact of selected pesticides on early life stages of the soft-shell clam, Mya arenaria. Clams were exposed for 24h as veligers or pediveligers to the broad-spectrum herbicide hexazinone [3-cyclohexyl-6-(dimethylamino)-1-methyl-1,3,5-triazine-2,4(1h,3h)-dione; Velpar®], the phenoxyacetic acid herbicide, 2,4-D (2,4-dichlorophenoxyacetic acid; Agway® Super BK 32), or phosmet (Imidan®). In addition, juvenile clams were exposed for 24h to 2,4-D and their growth monitored for 21 months. Laboratory experiments indicated veligers were more sensitive to acute pesticide exposure than pediveligers, with 2,4-D exposed veligers exhibiting the lowest survival among all treatments. Relative to controls, juvenile clams exposed to 0.5ppm 2,4-D had enhanced survival following the initial 3 months of grow out. Juveniles exposed to 0.5, 5 and 10ppm 2,4-D showed an initial growth delay relative to control clams, but at 21 months post-exposure these clams were significantly larger than control clams. Data from the larval and juvenile exposures were used to generate a stage-specific matrix model to predict the effect of pesticide exposure on clam populations. Impacts on simulated clam populations varied with the pesticide and stage exposed. For example, 2,4-D exposure of veligers and pediveligers significantly reduced predicted recruitment as well as population growth rate compared to controls, but juvenile exposure to 2,4-D did not significantly reduce population growth rate. With the exception of veligers exposed to 10ppm, hexazinone exposure at the both veliger and pediveliger stages significantly reduced predicted recruitment success compared to 0ppm controls. Hexazinone exposure also reduced modeled population growth rates, but these reductions were only slight in the pediveliger exposure simulations. Veliger and pediveliger exposure to phosmet reduced modeled population growth rate in a dose-dependent fashion. Changes in modeled population stable stage distributions were also observed when veligers were exposed to any pesticide. These results suggest that both the stage of exposure and the specific toxicant are important in predicting effects of pesticide exposure on soft-shell clam populations, with earlier life stages showing greater sensitivity to the pesticides tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.