Abstract

Unique interactions between soil and communication components in wireless underground communications necessitate revisiting fundamental communication concepts from a different perspective. In this paper, capacity profile of wireless underground (UG) channel for multi-carrier transmission techniques is analyzed based on empirical antenna return loss and channel frequency response models in different soil types and moisture values. It is shown that data rates in excess of 124 Mbps are possible for distances up to 12 m. For shorter distances and lower soil moisture conditions, data rates of 362 Mbps can be achieved. It is also shown that due to soil moisture variations, UG channel experiences significant variations in antenna bandwidth and coherence bandwidth, which demands dynamic subcarrier operation. Theoretical analysis based on this empirical data show that by cyber-physical adaption to soil moisture variations, 180% improvement in channel capacity is possible when soil moisture decreases. It is shown that compared to a fixed bandwidth system; soil-based, system and sub-carrier bandwidth adaptation leads to capacity gains of 56%-136%. The analysis is based on indoor and outdoor experiments with more than 1,500 measurements taken over a period of 10 months. These semi-empirical capacity results provide further evidence on the potential of underground channel as a viable media for high data rate communication and highlight potential improvements in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.