Abstract

Sea ice is a sensitive indicator of climate change and an important component of climate system models. The Los Alamos Sea Ice Model 5.0 (CICE5.0) was introduced to the Beijing Climate Center Climate System Model (BCC_CSM) as a new alternative to the Sea Ice Simulator (SIS). The principal purpose of this paper is to analyze the impacts of these two sea ice components on simulations of basic Arctic sea ice, atmosphere, and ocean states. Two sets of experiments were conducted with the same configurations except for the sea ice component used, i.e., SIS and CICE. The distributions of sea ice concentration and thickness reproduced by the CICE simulations in both March and September were closer to actual observations than those reproduced by SIS simulations, which presented a very thin sea ice cover in September. Changes in sea ice conditions also brought about corresponding modifications to the atmosphere and ocean circulation. CICE simulations showed higher agreement with the reference datasets than did SIS simulations for surface air temperature, sea level pressure, and sea surface temperature in most parts of the Arctic Ocean. More importantly, compared with simulations with SIS, BCC_CSM with CICE revealed stronger Atlantic meridional overturning circulation (AMOC), which is more consistent with actual observations. Thus, CICE shows better performance than SIS in BCC_CSM. However, both components demonstrate a number of common weaknesses, such as overestimation of the sea ice cover in winter, especially in the Nordic Sea and the Sea of Okhotsk. Additional studies and improvements are necessary to develop these components further.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call