Abstract

Abstract Assimilation experiments have been performed with the Weather Research and Forecasting (WRF) model’s three-dimensional variational data assimilation (3DVAR) scheme to assess the impacts of NASA’s Quick Scatterometer (QuikSCAT) near-surface winds, and Special Sensor Microwave Imager (SSM/I) wind speed and total precipitable water (TPW) on the analysis and on short-range forecasts over the Indian region. The control (without satellite data) as well as WRF 3DVAR sensitivity runs (which assimilated satellite data) were made for 48 h starting daily at 0000 UTC during July 2006. The impacts of assimilating the different satellite dataset were measured in comparison to the control run, which does not assimilate any satellite data. The spatial distribution of the forecast impacts (FIs) for wind, temperature, and humidity from 1-month assimilation experiments for July 2006 demonstrated that on an average, for 24- and 48-h forecasts, the satellite data provided useful information. Among the experiments, WRF wind speed prediction was improved by QuikSCAT surface wind and SSM/I TPW assimilation, while temperature and humidity prediction was improved due to the assimilation of SSM/I TPW. The rainfall prediction has also been improved significantly due to the assimilation of SSM/I TPW, with the largest improvement seen over the west coast of India. Through an improvement of the surface wind field, the QuikSCAT data also yielded a positive impact on the precipitation, particularly for day 1 forecasts. In contrast, the assimilation of SSM/I wind speed degraded the humidity and rainfall predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call