Abstract
We report two approaches to fabricating high performance normally-off AIGaN/GaN high-electron mobility transistors (HEMTs). The fabrication techniques employed were based on recessed-metal-insulator-semiconductor (MIS) gate and recessed fluoride-based plasma treatment. They were selectively applied to the area under the gate electrode to deplete the two-dimensional electron gas (2-DEG) density. We found that the recessed gate structure was effective in shifting the threshold voltage by controlling the etching depth of gate region to reduce the AIGaN layer thickness to less than 8 nm. Likewise, the CF4 plasma treatment effectively incorporated negatively charged fluorine ions into the thin AIGaN barrier so that the threshold voltage shifted to higher positive values. In addition to the increased threshold voltage, experimental results showed a maximum drain current and a maximum transconductance of 315 mA/mm and 100 mS/mm, respectively, for the recessed-MIS gate HEMT, and 340 mA/mm and 330 mS/mm, respectively, for the fluoride-based plasma treated HEMT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.