Abstract

One of the key features of a Bayesian stock assessment is that the modeller needs to provide knowledge on model parameters. Priors summarise modellers’ understanding of model parameters and are often defined by a probability distribution function. Priors are often mis-specified with arbitrary and unrealistic accuracy and precision in perceiving the state of nature for the parameters as a result of our limited understanding of fisheries ecosystems. Commonly used probability functions such as normal distribution functions tend to be sensitive to prior mis-specification, resulting in large uncertainty and/or errors in Bayesian stock assessment. Fat-tailed functions such as the Cauchy distribution function have been found to be robust to prior mis-specification. Using the Maine sea urchin fishery as an example, we evaluated the impacts of mis-specification in defining the prior distributions on Bayesian stock assessment. The present study suggests that the quantification of priors with a Cauchy distribution tends to be robust to the prior mis-specification. Given our limited understanding of fisheries a function such as the Cauchy distribution function that is robust to prior mis-specification tends to be more desirable. Future studies should explore the use of other fat-tailed distribution functions for quantifying priors in fisheries stock assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.