Abstract
Plant and soil stoichiometric ratios can be used to explain changes in the structural and functional characteristics of plant communities. Exploring the relationships between the stoichiometric ratios and plant diversity is helpful to further elucidate the effects of soil and nutrient constraints on community vegetation. However, such studies remain poorly understood in desert ecosystems. In this study, we analysed the effects of soil moisture and salt content on soil and leaf stoichiometry, species diversity and their relationships in the desert ecosystem of the Ebinur Lake basin. The results showed that: (i) Compared with the low soil moisture and salinity (SW2) environment, the soil and leaf C, N, P contents and soil stoichiometric ratios were larger in the high soil moisture and salinity (SW1) environment, and the leaf stoichiometric ratios were smaller. (ii) In SW1 environment, species diversity was negatively correlated with soil C:N and C:P, but weakly correlated with soil stoichiometric ratios in SW2 environment. In addition, the relationships between it and leaf stoichiometric ratios were reversed in different moisture and salinity environments. (iii) Structural equation modelling showed that leaf C:P, C:N and soil C:P had strong effects on species diversity. This research aims to provide a scientific reference for maintaining plant diversity, vegetation reconstruction and ecosystem restoration in desert areas, and enrich the ecological stoichiometric theory of desert ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.