Abstract

Zinc (Zn) and phytic acid content in grain crops are directly related to their nutritional quality and therefore human health. To investigate the nutritional influences of phosphorus (P) and Zn levels on wheat (Triticum aestivum L.), plants were grown hydroponically to maturity in chelator-buffered solutions. Appropriate amounts of P, coupled with sufficient Zn, increased P and Zn concentrations in wheat grain. The Zn supply decreased both phytic acid and the molar ratios of phytic acid to Zn in wheat grain with respect to the Zn(0) treatment. Furthermore, proportions of Zn and P content in the grain relative to that of the whole plant were improved. With increasing P, the proportion of Zn and P content in the grain relative to the whole plant decreased. P and Zn acted antagonistically in roots. Excess P inhibited Zn uptake in roots, while Zn decreased the transfer of P from roots to shoots. For P that had been transported to the shoots, supplemental Zn facilitated its transfer to the grain. Excess P decreased the distribution of Zn in grain, while Zn enhanced the uptake of Zn and P in grain, The combined application of Zn fertilizer with the extensive use of P fertilizer can effectively increase the P and Zn concentration and Zn bioavailability of wheat grain, and hence Zn nutritional quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call