Abstract
This paper presents a comprehensive sensitivity analysis to identify the uncertain parameters which significantly influence the decision-making process in distributed generation (DG) investments and quantify their degree of influence. To perform the analysis, a DG investment planning model is formulated as a novel multistage and multiscenario optimization problem. Moreover, to ensure tractability and make use of exact solution methods, the entire problem is kept as a mixed-integer linear programming optimization. A real-world distribution network system is used to carry out the analysis. The results of the analysis generally show that uncertainty as well as operational variability of the considered parameters have meaningful impacts on investment decisions of DG. The degree of influence varies from one parameter to another. But, in general, ignoring or inadequately considering uncertainty and variability in model parameters has a quantifiable cost. Hence, the analysis made in this paper can be very useful to identify the most relevant model parameters that need special attention in planning practices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.