Abstract
Models for quantifying impacts on biodiversity from renewable energy technologies are lacking within life cycle impact assessment (LCIA). We aim to provide an overview of the effects of wind energy on birds and bats, with a focus on quantitative methods. Furthermore, we investigate and provide the necessary background for how these can be integrated into new developments of LCIA models in future. We reviewed available literature summarizing the effects of wind energy developments on birds and bats. We provide an overview of available quantitative assessment methods that have been employed outside of the LCIA framework to model the different impacts of wind energy developments on wildlife. Combining the acquired knowledge on impact pathways and associated quantitative methods, we propose possibilities for future approaches for a wind energy impact assessment methodology for LCIA. Wind energy production has impacts on terrestrial biodiversity through three main pathways: collision, disturbance, and habitat alterations. Birds and bats are consistently considered the most affected taxonomic groups, with different responses to the before-mentioned impact pathways. Outside of the LCIA framework, current quantitative impact assessment prediction models include collision risk models, species distribution models, individual-based models, and population modeling approaches. Developed indices allow scaling of species-specific vulnerability to mortality, disturbance, and/or habitat alterations. Although insight into the causes behind collision risk, disturbance, and habitat alterations for bats and birds is still limited, the current knowledge base enables the development of a robust assessment tool. Modeling the impacts of habitat alterations, disturbance, and collisions within an LCIA framework is most appropriate using species distribution models as those enable the estimation of species’ occurrences across a region. Although local-scale developments may be more readily feasible, further up-scaling to global coverage is recommended to allow comparison across regions and technologies, and to assess cumulative impacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Life Cycle Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.