Abstract

o-Cresol is a toxic substance with strong irritating and corrosive effects on skin and mucous membranes. To date, information on the effects of o-cresol on microbial communities in the natural environment is very limited. In the present study, 16S rRNA sequencing and metagenomic technique were carried out to elucidate the effects of the o-cresol spill on microbial communities in river sediments and nearby soils. o-Cresol spill induced the increase in the relative abundance of phyla Planctomycetes and Gemmatimonadetes, suggesting their resilience to o-cresol-induced stress. Uncultured Gemmatimonadetes genera and the MND1 genus exhibited enrichment, while the Pseudomonas genus dominated across all samples, indicating their potential pivotal roles in adapting to the o-cresol spill. Moreover, o-cresol spill impaired the metabolic functions of microbes but triggered their defense mechanisms. Under o-cresol pressure, microbial functions related to carbon fixation were upregulated and functions associated with sulfur metabolism were downregulated. In addition, the o-cresol spill led to an increase in functional genes related to the conversion of o-cresol to 3-methylcatechol. Several genes involved in the degradation of aromatic compounds were also identified, potentially contributing to the biodegradation of o-cresol. This study provides fresh insights into the repercussions of an abrupt o-cresol spill on microbial communities in natural environments, shedding light on their adaptability, defense mechanisms, and biodegradation potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call