Abstract

This paper examines the potential effects of Saharan dust intrusions on the microphysical structure and optical properties of anvil-cirrus clouds. A series of 3-D LES simulations were initialized and forced by output data from mesoscale simulations in a previous study, in which we analyzed the impact of the enhanced low-level concentrations of cloud-nucleating aerosols on the characteristics of convective storms. The effects of enhancing aerosol concentrations on the ice-particle size distributions as well as some of their moments were analyzed as the LES model domain followed the trajectory of the simulated cirrus cloud. The experimental design was based on aerosol concentrations observed over the peninsula of Florida toward the end of the CRYSTAL-FACE field campaign held during July 2002. Results indicate that variations in the concentrations of nucleation aerosols have a significant effect on the optical properties and lifetime of cirrus anvil clouds. In addition, enhancing low-level aerosols can affect the radiation budget, leading to surface radiative cooling. Both IFN and CCN enhancements show important effects; however, results suggest that CCN and GCCN play a more dominant role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.