Abstract

MHD viscoelastic (Walters’-B) fluid flow close to the stagnation point region along an extending plate with the changeable fluid properties’ influences has been debated. Heat transfer’s features are scrutinized via Cattaneo–Christov (CC) theory. The mathematical model for the physical problem is tackled numerically via Chebyshev pseudospectral (CPS) technique. The existing outcomes are supported by recent research and have acquired a suitable agreement. The numerical outcomes reveal that temperature fields are more pronounced for Fourier’s law case. Further, the opposite behavior is noticed with the heat transfer rate. Higher values of the conjugate parameter result in an increment of the heat transfer rate and temperature field. Fluid flow’s features, as well as physical quantities, are substantially varied via variable fluid properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.