Abstract
The passive southern margin of the Australian continent, which formed following Cretaceous–Palaeogene separation from Antarctica, contains a rich record of Neogene–Recent compressional deformation and uplift. This deformation and uplift is manifested by reversal of displacement along syn-rift extensional faults, folding of mid–late Cenozoic post-rift sediments, and regional unconformities that can be traced for distances of up to 1,500 km along the margin. Palaeothermal data from onshore and offshore exploration wells indicate that erosion associated with deformation and uplift locally exceeds 1 km in the eastern Otway Basin. Both neotectonic palaeostress trends inferred from these structures and present-day stress orientations are consistent with northwest–southeast directed compression controlled to first-order by plate boundary forces. The critical role of the relative timing of trap formation and source rock maturation in controlling hydrocarbon prospectivity in the southern Australian margin is investigated by comparing two structures that formed during Neogene–Recent deformation in the Otway Basin: the Minerva and Nerita anticlines. While the Minerva Anticline hosts a major gas field (558 BCF GIP), the Nerita Anticline was found to be dry. A combination of apatite fission track analysis (AFTA), vitrinite reflectance (VR) and present-day temperature data show that all units intersected in Minerva–1 are presently at their maximum post-depositional temperatures, and are presently mature for hydrocarbon generation. In contrast, similar data collected from the preserved section at Nerita–1 indicate cooling from maximum post-depositional temperatures prior to formation of the Nerita Anticline in the late Miocene. Based on regional AFTA data, the underlying early Cretaceous source rocks probably reached maximum palaeotemperatures and ceased hydrocarbon generation during mid-Cretaceous uplift. These results indicate that areas of the southern margin that were deformed during the Neogene–Recent have the greatest potential to trap hydrocarbons where potential source rocks are presently at their maximum post-depositional temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.