Abstract
The present study was undertaken to evaluate the impacts of nano-composites of copper and carbon (NCCC) on the intestinal luminal micro-ecosystem and mucosal homeostasis of yellow-feather broilers. A total of two-hundred and forty 1-day-old male yellow-feather broilers were randomly allocated into four groups, each with five replications of twelve birds. The control (CON) group received a corn-soybean basal diet, while the N50, N100, and N200 groups were supplemented with 50, 100, and 200 mg/kg of NCCC in basal diets, respectively. The trial duration was 63 days. The findings demonstrated that there were slight impacts of NCCC addition on the intestinal luminal micro-ecosystem of broilers, with the fecal moisture content in the N100 group being slightly higher on Day 3 in the starter phase (p < 0.05). The cecal microbiota structure also did not obviously change (p > 0.05), in spite of the fall in the relative abundance of the Ruminococcus torques group in the N50 group and norank Clostridia UCG-014 in N200 group (p < 0.05). But for intestinal mucosal homeostasis, NCCC played a crucial part in jejunal morphology, tight junction, immunologic status, and antioxidant capacity. There was linear growth in villus height and a quadratic increase in villus height, crypt depth and their ratio with the increase in NCCC dosage (p < 0.05), and 100 mg/kg NCCC supplementation could intensify the expression of CLDN-3 genes (p < 0.05). In addition, IL-4 and IL-10 linearly increased after NCCC treatment (p < 0.05), along with some irregular changes in sIgA (p < 0.05). In addition, higher jejunal mucosal total antioxidant capacities in N50 and N200 groups were also observed (p < 0.05). Overall, NCCC treatment optimized the intestinal mucosa function of broilers in terms of physical barrier and immune and antioxidant capacities, but exerted subtle influence in the luminal environment of yellow-feather broilers. More precisely, dietary supplementation with 50 mg/kg NCCC is recommended for intestinal homeostasis of broilers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.