Abstract

This study investigates the impacts of the joint assimilation of microware temperature sensor, Advanced Microwave Sounding Unit-A (AMSUA), and microware humidity sensors, Microwave Humidity Sounder (MHS) and Microwave Humidity Sounder-2 (MWHS2), on the analyses and forecasts for the tropical cyclone (TC) system. Experiments are conducted using a three-dimensional variation (3DVAR) algorithm in the framework of the weather research and forecasting data assimilation (WRFDA) system for the forecasting of Typhoon Ampil (2018). The results show that the assimilation of MWHS2 radiance data improves the analyses better in terms of TC’s structure and moisture conditions than those of the MHS experiment. To some extent, the experiment with only AMSUA radiance delivers some positive impacts of the precipitation, track, and intensity forecast than the other two experiments do. In addition, the skill of the precipitation forecast is notably enhanced with higher equitable threat score (ETS) by the simultaneous assimilation of the MHS, MWHS2, and AMSUA radiance. Generally, assimilation of radiance from all sources of MHS, MWHS2, and AMSUA could combine the advantages of assimilating each type of sensors rather than individually. The consistent improvement is also confirmed for the TC’s track forecast with reduced error on average, whereas the improvement of intensity forecast is not obvious.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call