Abstract
The molecular orientation affected by the interaction between a substrate and deposited molecules plays an important role in device performance. It is known that the molecular orientation influences not only the charge transport property but also its electronic structure. Therefore, the combined study of morphology and electronic structure is of high importance for device application. As a transparent electrode, graphene has many promising advantages. However, graphene itself does not have an adequate work function for either an anode or a cathode, and thus the insertion of a charge injection layer is necessary for it to be used as an electrode. In this study, the hole injection barrier (HIB) reduction was investigated at the interface of copper phthalocyanine (CuPc)/graphene with the insertion of a hexaazatriphenylene hexacarbonitrile (HAT-CN) layer between them. The insertion of the HAT-CN layer roughens the originally flat graphene surface and it weakens the π-interaction between CuPc and of graphene. ...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.