Abstract

The impacts of different methods of mechanical site preparation (MSP) on performance and foliar nutrition of planted white spruce ( Picea glauca (Moench) Voss) seedlings were examined at two mixed-wood boreal forest sites (Judy Creek, Fox Creek) in Alberta, Canada. The treatments included three types of MSP: disc trench, ripper plough, and bladed, the latter including thin and thick microsites (based on depth of remaining organic matter); as well as a harvested-control (no MSP). Seedlings were planted in June 1991, four months after MSP, and foliar N, P, K, Ca, Mg, S, Mn, Fe, and Al were assessed in the second and third growing seasons (13, 25, and 28 months later). Nutrient concentration and relative (among treatments) foliar nutrient content scaled up to the level of the whole seedling were examined. Following analysis of variance, significant responses were interpreted using vector analysis. MSP did not significantly affect seedling survival, height or unit needle weight. There was a non-significant trend of higher foliar biomass for seedlings in MSP areas than for control seedlings. Overall, the impact of MSP on foliar nutrient status on these sites was minimal. The only consistent positive effect of MSP on seedling nutrition was increased foliar Mg concentrations in blade-thin sites at Fox Creek. Indications of possible negative impacts of MSP include: increased Fe and Al concentrations in MSP areas at both sites; reduced P and K concentrations at both sites; and reduced Mn concentration and content at one site. The ripper treatment had the greatest positive effect on foliar nutrient status (P, K, Mn concentration). Blading (particularly blade-thin) resulted in the lowest concentrations of foliar P, K and Mn and the greatest increases in foliar Fe and Al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.