Abstract

The crucial functional arbuscular mycorrhizal fungi (AMF) and diazotrophs play pivotal roles in nutrient cycling during vegetation restoration. However, the impact of managed vegetation restoration strategies on AMF and diazotroph communities remains unclear. In this study, we investigated the community structure and diversity of AMF and diazotrophs in a karst region undergoing managed vegetation restoration from cropland. Soil samples were collected from soils under three vegetation restoration strategies, plantation forest (PF), forage grass (FG), and a mixture of plantation forest and forage grass (FF), along with a control for cropland rotation (CR). The diversity of both AMF and diazotrophs was impacted by managed vegetation restoration. Specifically, the AMF Shannon index was higher in CR and PF compared to FF. Conversely, diazotroph richness was lower in CR, PF, and FG than in FF. Furthermore, both AMF and diazotroph community compositions differed between CR and FF. The relative abundance of AMF taxa, such as Glomus, was lower in FF compared to the other three land-use types, while Racocetra showed the opposite trend. Among diazotroph taxa, the relative abundance of Anabaena, Nostoc, and Rhizobium was higher in FF than in CR. Soil properties such as total potassium, available potassium, pH, and total nitrogen were identified as the main factors influencing AMF and diazotroph diversity. These findings suggest that AMF and diazotroph communities were more sensitive to FF rather than PF and FG after managed vegetation restoration from cropland, despite similar levels of soil nutrients among PF, FG, and FF. Consequently, the integration of diverse economic tree species and forage grasses in mixed plantations notably altered the diversity and species composition of AMF and diazotrophs, primarily through the promotion of biocrust formation and root establishment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.