Abstract

<p>In order to assess peatland carbon sink potential under multiple global change perturbations, we examined the individual and combined effects of long-term warming and enhanced nitrogen (N) and sulfur (S) deposition on ecosystem CO<sub>2 </sub>exchange at one of the longest-running experiments on peatlands, Degerö Stormyr poor fen, Sweden. The site has been treated with NH<sub>4</sub>NO<sub>3</sub> (15 times ambient annual wet deposition), Na<sub>2</sub>SO<sub>4</sub> (6 times ambient annual wet deposition) and elevated temperature (air +3.6 C) for 23 years. Gross photosynthesis, ecosystem respiration and net CO<sub>2</sub> exchange were measured weekly during June-August using chambers. After 23 years, two of the experimental perturbations: N addition and warming individually reduced net CO<sub>2</sub> uptake potential down to 0.3-0.4 fold compared to the control mainly due to lower gross photosynthesis. Under S only treatment ecosystem CO<sub>2</sub> fluxes were largely unaltered. In contrast, the combination of S and N deposition and warming led to a more pronounced effect and close to zero net CO<sub>2</sub> uptake potential or net C source. Our study emphasizes the value of the long-term multifactor experiments in examining the ecosystem responses: simultaneous perturbations can have nonadditive interactions that cannot be predicted based on individual responses and thus, must be studied in combination when evaluating feedback mechanisms to ecosystem C sink potential under global change.</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call