Abstract

Soil phosphorus (P) adsorption and desorption occur in an important endogenous cycle linked with soil fertility problems and relevant to the environmental risk assessment of P. In our study, the effect of long-term inorganic and organic fertilization on P adsorption and desorption characteristics in relation to changes in soil properties was evaluated by selecting three long-term experimental sites in southern China. The selected treatments at each site were CK (unfertilized), NPK (synthetic nitrogen, phosphorus and potassium) and NPKM (synthetic NPK plus manure). The adsorption and desorption characteristics of P were evaluated using Langmuir and Freundlich isotherms. The results showed that long-term application of NPK plus manure significantly increased soil organic carbon (SOC), total P and available P at all three sites compared with the NPK and CK treatments. All three treatments fit these equations well. The maximum adsorption capacity (Qm) of P increased with NPKM treatment, and the binding energy of P (K) and the maximum buffering capacity (MBC) showed increasing trends. NPKM showed the highest Qm (2346.13 mg kg-1) at the Jinxian site, followed by Nanchang (221.16 mg kg-1) and Ningxiang (2219.36 mg kg-1). Compared to CK and NPK, the NPKM treatment showed a higher MBC as 66.64, 46.93 and 44.39 L kg-1 at all three sites. The maximum desorption capacity (Dm) of P in soil was highest with the NPKM treatment (157.58, 166.76, 143.13 mg kg-1), showing a better ability to release P in soil. The correlation matrix showed a significant positive correlation of SOC, total and available P with Qm, Dm and MBC. In conclusion, it is suggested that manure addition is crucial to improve P utilization in red paddy soils within the recommended range to avoid the risk of environmental pollution.

Highlights

  • Phosphorus (P) is an important macronutrient required for plant growth and is a vital constituent of fertilizers applied to crops grown worldwide [1]

  • The three sites under long-term fertilization selected for this study are located in Nanchang (NC) which belongs to Soil, Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, Jinxian (JX) and Ningxiang (NX) that belongs to Red Soil Institute of Jiangxi province, China

  • All the treatments were set in a randomized complete block design (RCBD)

Read more

Summary

Introduction

Phosphorus (P) is an important macronutrient required for plant growth and is a vital constituent of fertilizers applied to crops grown worldwide [1]. Because of the robust adsorption of soil P by aluminum-iron (Al-Fe) oxides, the bioavailability of P to crop plants is inadequate in red soils [5]. In the past few decades, large amounts of organic and inorganic P have been applied to these soils to ensure maximum crop yields. This continuous long-term application of P fertilizer results in the gradual depletion of rock phosphate resources [6]. Lessening P adsorption and enhancing the availability of P in red paddy soils is an imperative topic to be focused on in current environmental research

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.