Abstract

Nitrogen dioxide (NO2) is a ubiquitous atmospheric pollutant, and fossil fuel combustion is generally considered its predominant source in and around urban areas. As the total nitrogen deposition is high over here, soil NOx emissions from urban green space might also be an important local source of ground-level NO2. In this study, Willems badge samplers were employed to monitor the spatial and seasonal variations of 2-week mean atmospheric NO2 concentrations at a height of 1.7 m on an urban campus in Northeast China from November 2020 to December 2021. We found considerable small-scale spatial variations of ground-level NO2 concentrations on the campus during the growing season, with local soil NOx emissions as the main driver. According to its linear correlation with green space coverage, the increment in ground-level NO2 concentration was partitioned into two components, with one ascribed to the local soil source (referred to as NO2-Isoil) and the other the local vehicle source (NO2-Ivehicle). NO2-Isoil generally reached a maximum (as high as 25.6 μg/m3) during early spring, while its ratio to the background value generally reached a maximum (could be >1) during late spring and could reach 0.52 to 0.92 during summer. Therefore, soil NOx emissions were an important source of ground-level NO2 on the campus, with the contribution even higher than those of other anthropogenic sources during late spring. Even with light traffic on the campus, NO2-Ivehicle could reach 0.48 times the background value at a site with high frequencies of warm starts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call