Abstract

In this work, we report a theoretical study on thermal conductivity of graphene nanoribbons by using molecular dynamics simulation. It is found that the thermal conductivity (κ) increases with the length (L) as, κ∝Lβ, even when the length is up to 600 nm. Moreover, thermal conductivities of curling and twisted graphene nanoribbons are investigated. In contrast to the obvious dependence on sample length, thermal conductivity is not sensitive to these types of geometry deformation due to the superior flexibility of graphenes. Our results predict that curling graphene nanoribbons may have advantages in suspended single-layer heat dissipation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.