Abstract

We investigated the impacts of leachates from a swine carcass burial site and a cow manure heap on the geochemical and microbiological properties of agricultural water samples, including leachate, groundwater from monitoring wells and background wells, and stream water. The leachate from the livestock burial site showed extremely high electrical conductivity, turbidity, and major ion concentrations, but low redox potential and dissolved oxygen levels. The groundwater in the monitoring wells adjacent to both sites showed severe contamination from the leachate, as indicated by the increases in EC, turbidity, Cl-, and SO42-. Bacteria from the phylum Firmicutes and Bacteriodetes and Archaea from the phylum Euryarchaeota were the major phyla in both the leachates and manure heap. However, the class- or genus-level components of these phyla differed markedly between the leachate and manure heap samples. The relative abundance of Firmicutes decreased from 35% to 0.3~13.9% in the monitoring wells and background wells at both sites. The Firmicutes in these wells was unlikely to have originated from the transportation of leachate to the surrounding environment because Firmicutes genera differed drastically between the leachate and monitoring wells. Meanwhile, sulfate-reducing bacteria (SRB) from the livestock carcass burial site were detected in the monitoring wells close to the leachate. This was likely because the release of carcass decomposition products, such as organic acids, to adjacent areas improved the suitability of the local environments for SRB, which were not abundant in the leachate. This study highlights the need to better understand microbial community dynamics along groundwater flow paths to evaluate bacterial transport in subsurface environments and provides new insights into the effective management of groundwater quality at both farm and regional scales.

Highlights

  • Surface water and groundwater contamination by livestock-waste-derived solutes and microorganisms and its risks to human health have long been recognized [1]

  • The objectives of this study were to 1) understand how the leachates from livestock-derived contamination sites impact the geochemical and microbiological properties of subsurface environments; 2) identify which microbial communities are predominant in swine carcass burial site and cow manure heap sites; 3) determine which factors control the microbial community compositions around these sites, and 4) examine to what spatial distance microorganisms in leachates can transport to surrounding subsurface environments

  • The physical and chemical properties of the groundwater in wells near livestock carcass burial and manure heap sites were directly influenced by the leachates

Read more

Summary

Introduction

Surface water and groundwater contamination by livestock-waste-derived solutes and microorganisms and its risks to human health have long been recognized [1] Leachates released from both mass carcass burial sites and livestock fecal waste heaps can have negative impacts on groundwater quality, and are a major public concern [2,3,4]. These leachates are a potential source of both conventional contaminants (e.g., chemical oxygen demand, total organic carbon, total nitrogen, total phosphorus, and solids) and biologically active contaminants (e.g., pathogens, antimicrobials and steroid hormones) that can move through subsurface environments [5]. Monitoring microorganisms and groundwater quality near burial sites is essential to ensure the safety of the local public

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.