Abstract
Amassing the available solar energy over the Sahara desert, through the installation of a large-scale solar farm, would satisfy the world’s current electricity needs. However, such land use changes may affect the global carbon cycle, possibly offsetting mitigation efforts. Here a fully coupled Earth System model EC-Earth was used to investigate the impact of a Saharan solar farm on the terrestrial carbon cycle, simulated with prescribed reduced surface albedo approximating the albedo effect of photovoltaic solar panels over the Sahara desert. The resulting changes to the carbon cycle were an enhancement of the carbon sink across Northern Africa, particularly around the Sahel but a simultaneous weakening of the carbon sink in the Amazon basin. This is observed through spatial pattern changes to the values of net biome production (NBP), more evident during Northern Hemisphere summer season. NBP changes are contributed by competing responses in the net primary production and heterotrophic respiration rates. These changes to carbon exchange correspond to a wetter and warmer climate occurring in Northern Africa and a drier and warmer climate in the Amazon, with stronger driving effects of precipitation. Due to these coupled responses and complex teleconnections, thorough investigation of remote impacts of solar farms are needed to avoid unintended consequences on the terrestrial carbon cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.