Abstract

Landscape pattern can regulate water quality, but determining the thresholds at which landscape metrics impact water quality remains a key issue. Thus, in this study, we investigated landscape metrics that affect the water quality of the rivers flowing into Dongjiang Lake, China, and their spatial and seasonal differences, were investigated using redundancy and partial redundancy analyses. Further, a raw water quality parameter-landscape metric data set was constructed. Threshold values of landscape metrics that induced sudden changes in water quality were analyzed using the bootstrap method applied to 1000 random samples extracted from data set. Finally, mechanisms of landscape patterns that affected river water quality were quantitively explored. The following results were obtained: (1) The key area of landscape that impacted water quality in the Dongjiang Lake Basin was the 400 m buffer zone; (2) Seasonal differences were observed in water quality changes, which better explained by landscape metrics in the dry season than in the wet season. Moreover, water quality was most influenced by landscape configuration metrics. The influence of landscape topographic metrics was greater than that of composition metrics in the dry season, whereas the opposite was true in the wet season; and (3) In this watershed, the largest patch index of grassland and landscape shape index of built-up land were the key metrics at the sub-basin and 400 m buffer zone, respectively. If the largest patch index of grassland was below 8.5% or the landscape shape index of built-up land exceeded 1.5, the water quality of the rivers flowing into the lake was prone to a risk of significant decline, which has an important guiding significance to the optimization of land use pattern.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call