Abstract

Abstract The arid and semiarid areas of the Loess Plateau are extremely sensitive to climate change. Land–atmosphere interactions of these regions play an important role in the regional climate. However, most present land surface models (LSMs) are not reasonable and accurate enough to describe the surface characteristics in these regions. In this study, we investigate the effects of three key land surface parameters including surface albedo, soil thermal conductivity, and additional damping on the Noah LSM in simulating the land surface characteristics. The observational data from June to September from 2007 to 2009 collected at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) station in northwest China are used to validate the Noah LSM simulations. The results suggest that the retrieved values of surface albedo, soil thermal conductivity, and additional damping based on observations are in closer agreement with those of the MULT scheme for surface albedo, the J75_NOAH scheme for soil thermal conductivity, and the Y08 scheme for additional damping, respectively. Furthermore, the model performance is not obviously affected by surface albedo parameterization schemes, while the scheme of soil thermal conductivity is vital to simulations of latent heat flux and soil temperature and the scheme of additional damping is crucial for simulating net radiation flux, sensible heat flux, and surface soil temperature. A set of optimal parameterizations is proposed for the offline Noah LSM at the SACOL station when the MULT scheme for surface albedo, the J75_NOAH scheme for soil thermal conductivity, and the Y08 scheme for additional damping are combined simultaneously, especially in the case of sensible heat flux and surface soil temperature simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.