Abstract

Native soy protein isolate (N-SPI) has a low denaturation point and low solubility, limiting its industrial application. The influence of different industrial modification methods (heat (H), alkaline (A), glycosylation (G), and oxidation (O)) on the structure of SPI, the properties of the gel, and the gel properties of soy protein isolate (SPI) in myofibril protein (MP) was evaluated. The study found that four industrial modifications did not influence the subunit composition of SPI. However, the four industrial modifications altered SPI's secondary structure and disulfide bond conformation content. A-SPI exhibits the highest surface hydrophobicity and I850/830 ratio but the lowest thermal stability. G-SPI exhibits the highest disulfide bond content and the best gel properties. Compared with MP gel, the addition of H-SPI, A-SPI, G-SPI, and O-SPI components significantly improved the properties of the gel. Additionally, MP-ASPI gel exhibits the best properties and microstructure. Overall, the four industrial modification effects may impact SPI's structure and gel properties in different ways. A-SPI could be a potential functionality-enhanced soy protein ingredient in comminuted meat products. The present study results will provide a theoretical basis for the industrialized production of SPI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.