Abstract
Overcompensation to herbivory is prevalent among plant species. However, we do not yet fully understand why plant species vary in their compensatory abilities. It is highly likely that overcompensation is determined by the ability of plants to elevate photosynthesis in response to herbivory, which is dictated by evolutionary exposure to grazing. Here, we tested the hypothesis that photosynthetic overcompensation should be predictable based on plant life form by simulating herbivore damage on four plant species: two common range grasses with long evolutionary exposure to grazing (Andropogon gerardii, Bouteloua curtipendula) and two common understory forbs that are resistant to, and therefore experience little, grazing (Alliaria petiolata, Symplocarpus foetidus). We measured leaf-level gas exchange in a high-resolution time series that extended throughout the growing season. We found no evidence of photosynthetic compensation for three of the four plant species. Interestingly, only A. petiolata, a highly invasive species, demonstrated increased photosynthesis and stomatal conductance following clipping. Further, the effects were short-lived, as both photosynthesis and stomatal conductance returned to baseline levels within 24 h. Our results suggest that elevated photosynthesis to herbivory might not be a general mechanism by which plants either resist or tolerate herbivory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.