Abstract

We investigated the optical properties and thermal conductivity of blade-coated graphene quantum dots (GQDs)/PEDOT:PSS hybrid thin films by varying the content of GQDs. The optical properties were determined by spectroscopic ellipsometry in the range of 1.2–5.5 eV. Two dispersion models were used to analyze the optical properties of the films: the Bruggeman effective medium approximation (BEMA) for the hybrid films, and the Drude model combined with a Lorentzian oscillator for both the pure and the hybrid films, which provides insight into their electrical properties. As a novel finding, we observed that the optical anisotropy of PEDOT:PSS (Aldrich 483095) films is reduced after incorporating GQDs. Moreover, dedoping of the PEDOT chains is demonstrated upon increasing the content of GQDs within the hybrid films. Furthermore, the thermal conductivity shows a two-fold decrease as the GQDs fraction increases from 0 to 10 wt%. This result is understood considering that the GQDs act as local scattering centers, resulting in a decrease of the thermal conductivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.