Abstract
Using the global chemistry and transport model MOZART, the simulated distributions of tropospheric hydroxyl free radicals (OH) over China and its sensitivities to global emissions of carbon monoxide (CO), nitrogen oxide (NOx), and methane (CH4) were investigated in this study. Due to various distributions of OH sources and sinks, the concentrations of tropospheric OH in east China are much greater than in west China. The contribution of NO + perhydroxyl radical (HO2) reaction to OH production in east China is more pronounced than that in west China, and because of the higher reaction activity of non-methane volatile organic compounds (NMVOCs), the contributions to OH loss by NMVOCs exceed those of CO and take the dominant position in summer. The results of the sensitivity runs show a significant increase of tropospheric OH in east China from 1990 to 2000, and the trend continues. The positive effect of double emissions of NOx on OH is partly offset by the contrary effect of increased CO and CH4 emissions: the double emissions of NOx will cause an increase of OH of 18.1%–30.1%, while the increases of CO and CH4 will cause a decrease of OH of 12.2%–20.8% and 0.3%–3.0%, respectively. In turn, the lifetimes of CH4, CO, and NOx will increase by 0.3%–3.1% with regard to double emissions of CH4, 13.9%–26.3% to double emissions of CO and decrease by 15.3%–23.2% to double emissions of NOx.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.