Abstract

BackgroundGenetically engineered, herbicide-resistant and insect-resistant crops have been remarkable commercial successes in the United States. Few independent studies have calculated their impacts on pesticide use per hectare or overall pesticide use, or taken into account the impact of rapidly spreading glyphosate-resistant weeds. A model was developed to quantify by crop and year the impacts of six major transgenic pest-management traits on pesticide use in the U.S. over the 16-year period, 1996–2011: herbicide-resistant corn, soybeans, and cotton; Bacillus thuringiensis (Bt) corn targeting the European corn borer; Bt corn for corn rootworms; and Bt cotton for Lepidopteron insects.ResultsHerbicide-resistant crop technology has led to a 239 million kilogram (527 million pound) increase in herbicide use in the United States between 1996 and 2011, while Bt crops have reduced insecticide applications by 56 million kilograms (123 million pounds). Overall, pesticide use increased by an estimated 183 million kgs (404 million pounds), or about 7%.ConclusionsContrary to often-repeated claims that today’s genetically-engineered crops have, and are reducing pesticide use, the spread of glyphosate-resistant weeds in herbicide-resistant weed management systems has brought about substantial increases in the number and volume of herbicides applied. If new genetically engineered forms of corn and soybeans tolerant of 2,4-D are approved, the volume of 2,4-D sprayed could drive herbicide usage upward by another approximate 50%. The magnitude of increases in herbicide use on herbicide-resistant hectares has dwarfed the reduction in insecticide use on Bt crops over the past 16 years, and will continue to do so for the foreseeable future.

Highlights

  • Engineered, herbicide-resistant and insect-resistant crops have been remarkable commercial successes in the United States

  • Today’s pest-management related genetically engineered (GE) traits have proven popular and commercially profitable for the biotechseed industry, but over-reliance has set the stage for resistance-driven problems in both herbicide-resistant and Bacillus thuringiensis (Bt)-transgenic crops

  • Because of the spread of glyphosate-resistant weeds, HR crop technology has led to a 239 million kg (527 million pound) increase in herbicide use across the three major GE-HR crops, compared to what herbicide use would likely have been in the absence of HR crops

Read more

Summary

Introduction

Engineered, herbicide-resistant and insect-resistant crops have been remarkable commercial successes in the United States. Public debate over genetically engineered (GE) crops is intensifying in the United States (U.S.), driven by new science on the possible adverse health impacts associated with herbicide-resistant (HR) crop pesticide use, and the rapid spread of glyphosate-resistant weeds. Stable reductions in insecticide use in Bt-transgenic corn are in jeopardy as a result of the emergence of corn rootworm (CRW) populations resistant to the Cry 3Bb1 toxins expressed in several corn hybrids [1,2]. To combat this ominous development, some seed and pesticide companies are recommending a return to use of corn soil insecticides as a resistance management tool. There is a degree of irony in such recommendations, given that the purpose of Cry 3Bb1 corn was to eliminate the need for corn soil insecticides

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call