Abstract

Soot particles emitted from aircraft engines constitute a major anthropogenic source of pollution in the vicinity of airports and at cruising altitudes. This emission poses a significant threat to human health and may alter the global climate. Understanding the characteristics of soot particles, particularly those generated from Twin Annular Premixing Swirler (TAPS) combustors, a mainstream combustor in civil aviation engines, is crucial for aviation environmental protection. In this study, a comprehensive characterization of soot particles emitted from TAPS combustors was conducted using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. The morphology and nanostructure of soot particles were examined across three distinct fuel stage ratios (FSR), at 10%, 15%, and 20%. The SEM analysis of soot particle morphology revealed that coated particles constitute over 90% of the total particle sample, with coating content increasing proportionally to the fuel stage ratio. The results obtained from HRTEM indicated that average primary particle sizes increase with the fuel stage ratio. The results of HRTEM and Raman spectroscopy suggest that the nanostructure of soot particles becomes more ordered and graphitized with an increasing fuel stage ratio, resulting in lower oxidation activity. Specifically, soot fringe length increased with the fuel stage ratio, while soot fringe tortuosity and separation distance decreased. In addition, there is a prevalent occurrence of defects in the graphitic lattice structure of soot particles, suggesting a high degree of elemental carbon disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.