Abstract
AbstractPollen dispersal is a key evolutionary and ecological process, but the degree to which variation in the density of concurrently flowering conspecific plants (i.e., coflowering density) shapes pollination patterns remains understudied. We monitored coflowering density and corresponding pollination patterns of the insect-pollinated palm Oenocarpus bataua in northwestern Ecuador and found that the influence of coflowering density on these patterns was scale dependent: high neighborhood densities were associated with reductions in pollen dispersal distance and gametic diversity of progeny arrays, whereas we observed the opposite pattern at the landscape scale. In addition, neighborhood coflowering density also impacted forward pollen dispersal kernel parameters, suggesting that low neighborhood densities encourage pollen movement and may promote gene flow and genetic diversity. Our work reveals how coflowering density at different spatial scales influences pollen movement, which in turn informs our broader understanding of the mechanisms underlying patterns of genetic diversity and gene flow within populations of plants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.