Abstract

Background: Grasslands are heavily utilised for livestock agriculture and the resultant degradation through mismanagement contributes to an estimated 60% of this biome being permanently transformed. This study focused on the impact of fire and grazing in moist highland grasslands.Objectives: To determine the contribution of burning frequency and grazing intensity combined (for domestic livestock and indigenous ungulates) on vegetation structure heterogeneity and species diversity.Methods: Eight study sites under different management regimes were sampled over two summers. Vegetation structure characteristics and diversity data were collected monthly within multiple replicates in each study site. A disc pasture meter was used to assess standing biomass. Differences in vegetation structure characteristics, plant community composition and plant species assemblage structure across sites were statistically analysed using analyses of variance, indicator species analyses, multidimensional scaling ordinations and two-way cluster analyses.Results: The combination of heavy grazing and annual burning leads to a distinct plant community dominated by disturbance specialist species. Selective grazing by indigenous herbivores promotes a community of unpalatable species. This study illustrates that fenced indigenous herbivores, even at moderate stocking densities, have a greater detrimental impact on plant diversity and structure than do domestic livestock.Conclusion: Intensive grazing and burning have a detrimental impact on plant species diversity and structure. This also affects resultant palatability for grazing livestock and fenced game. To promote both grazing quality and ecological integrity we recommend a minimum sustainable ‘fodder capacity’ or standing phytomass of 5000 kg per large-animal unit per hectare for domestic livestock in moist highland grasslands.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.