Abstract

Understanding the response of vegetation to temperature extremes is crucial for investigating vegetation growth and guiding ecosystem conservation. North China is a vital hub for China’s economy and food supplies, and its vegetation is highly vulnerable to complex heatwaves. In this study, based on remote sensing data, i.e., the normalized difference vegetation index (NDVI), spatio-temporal variations in vegetation and extreme high temperatures are investigated by using the methods of trend analysis, linear detrending, Pearson correlation and ridge regression. The impacts of extreme-high-temperature events on different vegetation types in North China from 1982 to 2015 are explored on multiple time scales. The results indicate that the NDVI in North China exhibits an overall increasing trend on both annual and monthly scales, with the highest values for forest vegetation and the fastest growth trend for cropland. Meanwhile, extreme-high-temperature events in North China also display an increasing trend. Before detrending, the correlations between the NDVI and certain extreme-high-temperature indices are not significant, while significant negative correlations are observed after detrending. On an annual scale, the NDVI is negatively correlated with extreme temperature indices, except for the number of warm nights, whereas, on a monthly scale, these negative correlations are only found from June to September. Grassland vegetation shows relatively strong correlations with all extreme temperature indices, while forests show nonsignificant correlations with the indices. This study offers new insight into vegetation dynamic variations and their responses to climate in North China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.