Abstract

Volcanic activities can create cataclysmic hazards to surrounding environments and human life not only during the eruption but also by hydrologic remobilisation (lahar) processes after the cessation of eruptive activity. Although there are many studies dealing with the assessment and mitigation of volcanic hazards, these are mostly concentrated on primary eruptive processes in areas proximal to active volcanoes. However, the influence of volcaniclastic resedimentation may surpass the impacts of primary eruptive activity in terms of both extent and persistence, and can ultimately result in severe hazards in downstream areas. Examination of the volcaniclastic successions of non-marine Pliocene–Holocene sedimentary basins in Japan has revealed hydrological volcaniclastic sedimentation in fluvial and lacustrine environments hundreds of kilometres from the inferred source volcano. Impacts on these distal and often spatially separated basins included drastic changes in depositional systems caused by sudden massive influxes of remobilised pyroclastic material. Typical volcaniclastic beds comprise centimetre- to decimetre-thick primary pyroclastic fall deposits overlain by metre- to 10s of metres-thick resedimented volcaniclastic deposits, intercalated in sedimentary successions of non-volcanic provenance. The relatively low component of primary pyroclastic fall deposits in the volcaniclastic beds suggests that: 1) potential volcanic hazards would be underestimated on the basis of primary pyroclastic fall events alone; and 2) the majority of resedimented material was likely derived from erosion of non-welded pyroclastic flow deposits in catchment areas rather than remobilisation of local fallout deposits from surrounding hillslopes. The nature, distribution and sequence of facies developed by distal volcaniclastic sediments reflect the influence of: 1) proximity to ignimbrite, but not directly with the distance to the eruptive centre; 2) ignimbrite nature (non-welded or welded) and volume; 3) temporal changes in sediment flux from the source area; 4) the physiography and drainage patterns of the source area and the receiving basin, and any intervening areas; and 5) the formation of ephemeral dam-lakes and intra-caldera lakes whose potential catastrophic failure can impact distal areas. Models of the styles and timing of distal volcaniclastic resedimentation are thus more complicated than those developed for proximal settings of stratovolcanoes and their volcaniclastic aprons and hence present different challenges for hazard assessment and mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call