Abstract

To tease apart differences between conventional cage (CC) and cage-free (CF) housing systems, this study focuses on the effects of excreta exposure and age by comparing microbial communities, intestinal permeability, and corticosterone in hens in enriched colonies (EC) and CF housing systems during early- and late-lay. Hens were randomly selected from two rooms of CF (n = 20) and EC (n = 20) at 35 and 76 weeks of age. One hour following an oral gavage of fluorescein isothiocyanate dextran (FITC-D), hens were euthanized, and ileal contents and blood were collected. Serum FITC-D using a fluorescent spectrophotometer and corticosterone using a commercial competitive ELISA kit were analyzed. Following DNA isolation from the ileum contents, the V4 region of the 16S rRNA gene was sequenced. Sequence data were filtered in Mothur v1.43.0, followed by de novo operational taxonomic unit (OTU) clustering and classifying with the SILVA SSU v138 reference database. Serum FITC-D was altered by housing type, age of hens, and the interaction between housing type and age of hens (p < 0.001), with 76-week-old hens housed in EC having the highest FITC-D. Corticosterone increased with age (p = 0.023). Microbial community diversity measurements favored hens housed in the CF housing system as ileal contents tended to have increased species evenness (p = 0.008) and greater alpha diversity (p = 0.006). The majority of the over-representation of OTUs were associated with peak lay.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.