Abstract
Abstract In this study, the impacts of evaporative cooling from raindrops on a tropical cyclone (TC) are examined using cloud-resolving simulations under an idealized condition. Part I of this study showed that evaporative cooling greatly increases the kinetic energy of a TC and its size because rainbands provide a large amount of condensation heating outside the eyewall. Part II investigates characteristics of simulated rainbands in detail. Rainbands are actively formed, even outside the eyewall, in the experiment including evaporative cooling, whereas they are absent in the experiment without evaporative cooling. Rainbands propagate in the counterclockwise and radially outward direction, and such behaviors are closely related to cold pools. New convective cells are successively generated at the upstream end of a cold pool, which is referred to here as the upstream development. The upstream development organizes spiral-shaped rainbands along a low-level streamline that is azimuthally averaged and propagates them radially outward. Asymmetric flows from azimuthally averaged low-level wind advance cold pool fronts in the normal direction to rainbands, which are referred to here as cross-band propagation. The cross-band propagation deflects the movement of each cell away from the low-level streamlines and rotates it in the counterclockwise direction. Cross-band propagation plays an essential role in the maintenance of rainbands. Advancement of cold pool fronts lifts up the warm and moist air mass slantwise and induces heavy precipitation. Evaporative cooling from raindrops induces downdrafts and gives feedback to the enhancement of cold pools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.