Abstract

This study analyses the impacts of electrification of the transport sector, involving both static charging and electric road systems (ERS), on the Swedish and German electricity systems. The impact on the electricity system of large-scale ERS is investigated by comparing the results from two model packages: 1) a modeling package that consists of an electricity system investment model (ELIN) and electricity system dispatch model (EPOD); and 2) an energy system investment and dispatch model (SCOPE). The same set of scenarios are run for both model packages and the results for ERS are compared. The modeling results show that the additional electricity load arising from large-scale implementation of ERS is mainly, depending on model and scenario, met by investments in wind power in Sweden (40–100%) and in both wind (20–75%) and solar power (40–100%) in Germany. This study also concludes that ERS increase the peak power demand (i.e., the net load) in the electricity system. Therefore, when using ERS, there is a need for additional investments in peak power units and storage technologies to meet this new load. A smart integration of other electricity loads than ERS, such as optimization of static charging at the home location of passenger cars, can facilitate efficient use of renewable electricity also with an electricity system including ERS. A comparison between the results from the different models shows that assumptions and methodological choices dictate which types of investments are made (e.g., wind, solar and thermal power plants) to cover the additional demand for electricity arising from the use of ERS. Nonetheless, both modeling packages yield increases in investments in solar power (Germany) and in wind power (Sweden) in all the scenarios, to cover the new electricity demand for ERS.

Highlights

  • In Europe, fuel combustion in the transport sector accounts for about 23% of greenhouse gas (GHG) emissions (Eurostat, 2015), and this is the only sector for which emissions are still growing compared to 1990 (European Commission, 2017)

  • What results are consistent outcome no matter type of model or model structure? This study presents a comparative study of two electricity system analysis models—ELIN-electricity dispatch model (EPOD) and SCOPE—individually developed at Chalmers University of Technology and Fraunhofer Institute for Energy Economics and Energy System Technology

  • The model results obtained from the two different models show that, when including static and dynamic charging of cars, trucks and buses, a Swedish and German electricity generation system without CO2 emissions can be achieved in different ways

Read more

Summary

Introduction

In Europe, fuel combustion in the transport sector accounts for about 23% of greenhouse gas (GHG) emissions (Eurostat, 2015), and this is the only sector for which emissions are still growing compared to 1990 (European Commission, 2017). Electrification of road transportation, together with an increased share of renewable electricity generation, is being proposed as an option for reducing CO2 emissions in the transport sector (Johansson, 2013; Fridstrøm and Alfsen, 2014; European Commission, 2017). The Swedish electricity system depends to 98% of non-fossil fuel sources, with 43% from hydro power, 43% from nuclear and 13% from wind power (Eurostat, 2019). The German electricity system consist to a large extent on combustible fuels (44%) and wind power (25%) with an increasingly share of solar power (9%) (Eurostat, 2019)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call