Abstract

In order to study the survival mechanisms to drought stress for fruit body of Auricularia auricula, soluble carbohydrates and respiratory enzymes were investigated. Fruit bodies were exposed to sunlight and were naturally dehydrated. Samples were taken at different levels of water loss (0%, 10%, 30%, 50% and 70%) to measure the content of soluble sugars and polysaccharides. The activities of phosphoglucose isomerase (PGI), combined glucose-6-phosphate dehydrogenase (G-6-PDH) and 6-phosphogluconate dehydrogenase (6-PGDH), and malate dehydrogenase (MDH), were also determined. The results showed that with the increase in water loss, soluble sugars and MDH activity declined, whereas the activities of G-6-PDH and 6-PGDH increased. Soluble polysaccharides content and PGI activity decreased with water loss up to 30% and increased afterwards. These results suggested that the pentose phosphate pathway (PPP), as demonstrated by activities of G-6-PDH and 6-PGDH, could be one of the mechanisms for survival during drought stress in the fruit body of A. auricula. Moreover, soluble polysaccharides may play a part in protecting the fruit body in further drought stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.