Abstract

We previously reported a spontaneous development of type 2 diabetes-like phenotypes in glutathione peroxidase-1 (GPX1)-overexpressing (OE) mice. Diet restriction of these mice rescued all their phenotypes, except for hyperinsulinemia and hypersecretion of insulin. This study was to determine whether dietary Se deficiency eliminated these two primary effects of GPX1 overproduction. Forty-seven male OE and wild-type (WT) mice were fed an Se-adequate (0.4 mg Se/kg) or deficient (<0.02 mg Se/kg) diet at 2 to 3 g (full-fed = 5 g) per day from 4 to 12 weeks of age. Although dietary Se deficiency did not rescue the primary phenotypes of the diet-restricted OE mice, it exerted a strong effect (p < 0.05) on mRNA or protein levels (or both) of 14 molecules involved in islet insulin synthesis and secretion and hepatic lipogenesis. Dietary Se deficiency exhibited a hypoinsulinemic trend in OE mice and a strong hypolipidemic effect (p < 0.05) in the liver of WT mice. Hepatic lipogenesis was attenuated in OE compared with WT mice. In conclusion, diet restriction might be too overwhelming to allow a demonstration of a dietary Se-depletion effect on the OE phenotypes. Full-fed animals could offer a better chance to illustrate such effects and the underlying mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.