Abstract

AbstractBased on observational data analyses and idealized modeling experiments, we investigated the distinctive impacts of central Pacific (CP-) El Niño and eastern Pacific (EP-) El Niño on the Antarctic sea ice concentration (SIC) in austral spring (September to November). The tropical heat sources associated with EP-El Niño and the co-occurred positive phase of Indian Ocean Dipole (IOD) excite two branches of Rossby wave trains that propagate southeastward, causing an anomalous anticyclone over the eastern Ross-Amundsen-Bellingshausen Seas. Anomalous northerly (southerly) wind west (east) of the anomalous anticyclone favor poleward (offshore) movements of sea ice, resulting in a sea ice loss (growth) in the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas). Meanwhile, the anomalous northerly (southerly) wind also advected warmer and wetter (colder and drier) air into the eastern Ross-Amundsen Seas (the Bellingshausen-Weddell Seas), causing surface warming (cooling) through the enhanced (reduced) surface heat fluxes and thus contributing to the sea ice melting (growth). CP-El Niño, however, forces a Rossby wave train that generates an anomalous anticyclone in the eastern Ross-Amundsen Seas, 20° west of that caused by EP-El Niño. Consequently, a positive SIC anomaly occurs in the Bellingshausen Sea. A dry version of the Princeton atmospheric general circulation model was applied to verify the roles of anomalous heating in the tropics. The result showed that EP-El Niño can remotely induce an anomalous anticyclone and associated dipole temperature pattern in the Antarctic region, whereas CP-El Niño generates a similar anticyclone pattern with its location shift westward by 20° in longitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call