Abstract

Simple SummaryQuail is used in cookery, but mainly for its egg production around the globe, and sustainable poultry farming practices have been searched. The use of colostrum (beestings or first milk from cows) in quails’ diet can play an important role in providing probiotics and reducing the need for antibiotics, which, in addition to better quail performance, is effective in reducing environmental impacts. The results of the current research show that the continuous use of bovine colostrum (BC) in laying quails’ diets has beneficial effects on their performance, egg traits, blood indexes and antioxidant status.The Japanese quail (Coturnix japonica) is farmed for its eggs and meat across the globe. A series of experiments were conducted to evaluate the effect of the permanent or intermittent use of different levels of BC (bovine colostrum) on the egg performance and traits, carcass characteristics, blood biochemical and antioxidant status of laying Japanese quails. In this study, 200 laying quails were used for a duration of six weeks (week 24 to 30) to measure the selected parameters. Treatments included: (1) control (without BC); (2) 2% continuous BC; (3) 4% BC permanently; and (4) and (5) 2% and 4% BC intermittently (every other week), respectively. According to the results, performance, egg quality, carcass traits, biochemical indices and antioxidant status of BC-fed (continuous and intermittent mode) quails were improved compared to the control-diet-fed birds (p < 0.01). Per our observations, quails fed daily with 4% BC had the highest performance, best egg and carcass quality traits, best blood composition and best antioxidant status of serum, although the same parameters were also improved in birds fed intermittently with 4% BC. The final conclusion is that, although quails fed daily with 4% BC showed the best performance, intermittent feeding exerted comparable effects. Therefore, the intermittent-feeding approach could benefit the birds when colostrum preparation is limited due to the high cost of the related process. This approach could improve the economics of poultry breeding while reducing environmental problems, such as antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call